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HEAT-TRANSFER DISTRIBUTION ON YO0 SWEPT SLAB DELTA WINGS 

AT A MACH NUMEZR OF 9.86 AND ANGLFS OF ATTACK UP TO 90' 

By Phil ip  E. Everhart and James C .  Dunavant 
Langley Research Center 

Heat-transfer dis t r ibut ions were obtained on TO0 swept slab del ta  wings 
with sharp and blunt noses and cyl indrical  leading edges. 
Reynolds number based on model thickness was 9 x 104. 
heat-transfer dis t r ibut ion i s  shown t o  be i n  good agreement with the data 
obtained on the nose and leading edge. 
edge i s  i n  close agreement with the Newtonian stagnation point a t  a l l  angles of 
attack. A t  angles of a t tack from 40° t o  600 cross-flow theory was i n  excellent 
agreement with experimental center-line data; however, a t  other model a t t i tudes  
the theory differed s ignif icant ly  from experiment. 
reduced heating ra tes  over the a f t  center-line section of the wing a t  angles of 
a t tack  l e s s  than about bo. 

The free-stream 
Lees' theory fo r  the  

The point of peak heating on the leading 

Nose blunting resulted i n  

INTROlXlCTION 

A systematic research program was i n i t i a t e d  a t  the Langley Research Center 
t o  provide detailed heat-transfer and pressure dis t r ibut ions fo r  delta wings 
over a wide range of Mach numbers and angles of attack. Low angle-of-attack 
heat-transfer and pressure dis t r ibut ions obtained under t h i s  program are  pre- 
sented i n  references 1 t o  3 .  Pressure dis t r ibut ions have been measured a t  high 
angles of a t tack (up t o  900 and beyond) on blunt leading-edge del ta  wings and 
are  presented i n  references 4 t o  6. Heat-transfer t e s t s  on sharp del ta  wings 
a t  angles of a t tack approaching 90° are  reported i n  references 7 and 8. Heat- 
t ransfer  and pressure dis t r ibut ions on YO0 del ta  wing configurations a t  a Mach 
number of 20 and angles of a t tack  from 00 t o  90° are  presented i n  reference 9. 

The purpose of the present investigation was t o  provide detailed heat- 
t ransfer  distributions a t  high angles of a t tack on 700 swept slab del ta  wings 
with cylindrical  leading edges and both sharp and blunt noses. T h i s  investiga- 
t ion  was carried out i n  the  Langley continuous-flow hypersonic tunnel a t  a Mach 
number of 9.86, a Reynolds number based on model thickness of 0.9 x 105, and 
f o r  angles of a t tack  from Oo t o  90'. 

Heat-transfer data were obtained by means of a t ransient  calorimeter method 
and a model-injection mechanism. The heat-transfer data a re  compared with the 



theories fo r  swept cylinders, spheres, and f la t  plates .  Lees' theory i s  com- 
pared with the r e su l t s  i n  the nose and leading-edge regions whereas the results 
on the s lab are compared with cross-flow and s t r i p  theories.  

SYMBOLS 

S C  

Sn 

SO 

t W  

t 

speed of sound 

Newtonian pressure coefficient 

specific heat of model skin material 

coefficient i n  l inear  expansion fo r  viscosi ty  (Fay and Riddell) 

aerodynamic heat-transfer coefficient 

index number 

distance along leading edge measured from apex of slab portion of wing 

Mach number 

Stanton number 

Prandtl number 

s t a t i c  pressure 

heat-transfer r a t e  

Reynolds number based on model thickness and free-stream conditions 

surface distance along wing normal t o  leading edge from Newtonian 
stagnation point 

surface distance along wing center l i n e  from Newtonian stagnation 
point 

surface distance along wing normal t o  leading edge measured from plane 
of symmetry of leading edge 

t o t a l  surface distance along wing normal t o  leading edge from midline 
of wing t o  center l i n e  of wing 

model skin thickness 

model s lab  thiclmess, diameter of nose and leading edge 
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T temperature 

Taw adiabatic w a l l  temperature 

U velocity 

a angle of a t tack  

7 

V r  temperature recovery factor  

r a t i o  of specific heats of a i r  taken t o  be 1.4 

P density 

7 t i m e  

CL viscosity 

A sweep angle 

Aeff effective sweep angle, s i n k f f  = s i n  A cos a 

Subscripts: 

2 s t a t i c  conditions just  behind normal shock 

cf cross flow 

2 loca l  s t a t i c  conditions j u s t  outside boundary layer 

mitX maximum 

N normal t o  leading edge 

0 stagnation-point values 

S sphere 

W wall material 

OD free-stream conditions 

APPAFUlTUS AND TESTS 

Tunnel 

The heat-transfer t e s t s  were conducted i n  the Langley continuous-flow 
hypersonic tunnel. Photographs of this f a c i l i t y  are  shown i n  figure 1. This 
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f a c i l i t y  i s  capable of maintaining a Mach number of 10 continuously by circu- 
l a t ing  the a i r  through a closed loop of compressors. In  normal operation the 
high-pressure r a t i o  required t o  s t a r t  the nozzle i s  supplied by a high-pressure 
a i r  storage system on one end and a vacuum tank downstream. 
diverted t o  the compressor loop within 30 seconds a f t e r  the flow i s  i n i t i a t e d  
and the movable second minimum i s  closed and thus the pressure r a t i o  required 
t o  maintain flow i s  reduced. Since the time required fo r  the heat-transfer 
t e s t s  was only a few seconds (for model in jec t ion) ,  the  f a c i l i t y  was operated 
by using the high-pressure stored a i r  and the vacuum sphere. 

The flow i s  

In  the present tests a contoured three-dimensional, water-cooled nozzle 
The nozzle 

The test-section 

with a square throat  and a 31-inch-square t e s t  section was used. 
had a calibrated Mach number of 9.86 k 0.10 over a 12-inch by 12-inch core a t  a 
stagnation chamber pressure of 600 pounds per square inch. 
Mach number was obtained from total-pressure measurements. 

Models 

Four delta-planform slab-wing models were constructed with TO0 sweep and 
cylindrical  leading edges. 
intersection of the elements of the cyl indrical  leading edge on the wing center 
l i ne .  The other two models had blunt noses and the apex was formed by a sphere 
tangent t o  the two leading edges and having the same diameter as  the cylindrical  
leading edge. The general configuration of the  models i s  shown by the photo- 
graph ( f ig .  2 ( a ) )  and pertinent dimensions a re  given i n  the detailed drawings 
( f igs .  2(b) and 2 ( c ) ) .  
were tes ted  through an angle-of-attack range of Oo t o  30° whereas the smaller 
models (models 3 and 4 i n  f ig .  2 ( c ) )  were tes ted  a t  angles of a t tack from 30° 

Two of the models had sharp noses formed by the 

The larger  models (models 1 and 2) shown i n  figure 2(b) 

t o  goo. 

The models were constructed from inconel i n  sections and then welded 
together. The leading edges were machined with a cyl indrical  outer surface and 
eccentric cylindrical  inner surface so  tha t  the skin thickness varied along the 
circumference of the cylinder; the skin thickness over the spherical nose of 
the blunt models was similarly varied. (See f ig .  3.) The slab surfaces were 
formed from sheet inconel. Models 1 and 2 had nominal skin thicknesses of 
0.040 inch on the windward side and 0.025 inch on the leeward side. Models 3 
and 4 had nominal s lab skin thicknesses of 0.050 inch on the windward side and 
0.025 inch on the leeward side. 
models was designed t o  reduce the variation i n  temperature around the model. 
The wings were assembled by electron beam welding the leading edges t o  the 
slabs. The two large models were s t ing  mounted from the model base; the two 
smalley models were attached t o  offset  adapters on the leeward side of the model 
a t  angles of 30° and 7 5 O  t o  the plane of the wing. 

The variation of skin thickness around the 

The location of the individual thermocouples i s  shown i n  figures 2(b) and 
The thermocouples were 0.010-inch-diameter chromel-alumel wire fastened 2 (c ) .  

t o  the model nose and leading edges by welding a preformed bead in to  a hole 
d r i l l ed  through the skin. The slab regions were instrumented by spotwelding 
individual wires t o  the inside of the skin. The instrumentation i s  l a i d  out 
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normal t o  the leading edge and on the slab the thermocouples are  a lso arranged 
on rays from the s lab apex. 

a, 
deg 

Tests 

%t 
TO f PO 9 

OR lb/sq in. abs 

Heat-transfer data were obtained a t  a free-stream Mach number of 9.86 fo r  
angles of a t tack from Oo t o  90°. Models 1 and 2 were tes ted a t  a stagnation 
pressure of 600 pounds per square inch which gave a Reynolds number based on 
model thickness (1.0 inch) of about 0.9 x 105 for  angles of a t tack from Oo t o  
300. For angles of a t tack from 30° t o  go0, models 3 and 4 were tes ted a t  a 
stagnation pressure or' 800 pounds per square inch (Reynolds number based on 
model thickness (0.73 inch) of about 0.9 x 105). 
was maintained a t  an average value of 1 1 7 5 O  F by means of an e l ec t r i ca l  

The stagnation temperature 

0 
10 
20 
30 
90 
80 
70 
60 
50 
40 
30 

resistance-tube heater. 

1670 609 0.90 x 105 
1682 607 .88 
1601 610 -97 
1648 600 .95 
1642 742 .80 
1582 754 .86 
1614 780 .86 
1629 791 -87 
1553 812 .98 
1539 808 1-00 
1577 807 -93 

Fmn 

3 
6 
7 
9 
15 
16 
17 
18 
19 
20 
21 

22 
23 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Chord 
lengthy 
in. 

11 
11 
11 
11 
8 
8 
8 
8 
8 
8 
8 

11 
11 
11 
11 
8 
8 
8 
8 
8 
8 
8 

Details of the t e s t  conditions a re  given i n  table  I. 

TABm I. - TEST CONDITIONS 

= 9.q 

0 
10 
20 
30 
90 
80 
70 
60 
50 
40 
30 

1609 

1638 
1629 
1552 
1578 
1566 
1583 
1522 
1632 

1714 

1649 

607 
606 
593 
589 
806 
806 
806 
802 
804 
796 
794 

1.10 x 105 
.84 
.90 
-90 
-97 
-91 
.93 
-91 
1.00 
.86 
.84 

5 



The heat t ransfer  was measured by means of a t ransient  heating method 
using a model-injection mechanism which was mounted on the side of the t e s t  
section a t  one of the window openings. 
the desired operating conditions with the model outside the t e s t  section. A 
ver t i ca l  door, which covered the test-section opening, w a s  re t racted and the 
model, oriented a t  t he  desired angle of attack, was injected in to  the tunnel. 
The time from the moment the  model was first exposed t o  the flow u n t i l  it 
reached the center l i n e  of the test  section was approximately 1/4 second. 
recording began simultaneously with the start of model inser t ion and continued 
f o r  6 seconds after the model reached the center l i n e  of the tunnel. The 
temperature-time data and tunnel flow conditions were automatically recorded on 
magnetic tape by an analog-to-digital converter a t  0.05-second intervals.  
the  temperature-time his tory was recorded, the model was retracted and cooled 
t o  approximately room temperature before the succeeding run. 

The tunnel was s ta r ted  and brought t o  

Data 

After 

Data Reduction 

The data reduction was performed on an automatic card program machine. 
Temperature-time curves were plot ted fo r  selected thermocouples t o  determine 
the time a t  which the i n i t i a l  t ransient  temperature r i s e  was completed. The 
heat-transfer r a t e  a t  0.5 second* a f t e r  t h i s  completion was determined by 
f i t t i n g  a quadratic least-squares c m e  t o  21 consecutive points centered about 
t h i s  time and spaced a t  intervals  of 0.05 second. The temperature-time deriva- 
t i v e  obtained by different ia t ing the equation w a s  used i n  the following equation 
t o  determine the heat-transfer ra te :  

9 = P,C,t, aw - - .(Taw - Tw) 

Values of the effect ive skin thickness were calculated from skin thicknesses 
measured during fabrication and the appropriate spherical  or cylindrical  radius 
f o r  use i n  equation (1). The value of specif ic  heat corresponding t o  the  model 
temperature w a s  used i n  equation (1). 
from the following empirical equation: 

The values of specific heat were obtained 

cW = 0.1041 + O.O00033Tw, BtU/lb-OF 

where Tw i s  i n  degrees Fahrenheit. The skin-density value was 0.307 lb/in.3. 

Adiabatic wall temperatures Taw were estimated f o r  each thermocouple 
location from the  relat ion:  

*The i n i t i a l  t ransient  temperature r i s e  on the  hemispherical nose of 
model 2 was longer than a t  other s ta t ions because of the very thick wall. 
avoid these t ransients ,  the heating was calculated 1 second l a t e r  a t  these few 
locations. 

To 

r 
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The recovery factor  w a s  calculated from the  square root of the Prandtl  number 
which w a s  estimated t o  be 0.70. 
measured pressures of reference 1 for angles of a t tack from Oo t o  300 and 
Newtonian 

from 40° t o  900. 
account. 
edge and s lab a swept-cylinder entropy rise w a s  assumed. 

Local Mach numbers w e r e  determined from the  

p," = 2.0 pressure dis t r ibut ions were used for angles of a t tack 

The entropy r i s e  across the appropriate shock w a s  taken in to  
For the  sphere a normal shock was used and f o r  t he  cyl indrical  leading 

(c ) 

E s t i m a t e s  of t h e  l a t e r a l  conduction of several  thermocouple s ta t ions where 
conduction was expected t o  be a maximum were calculated by the method i n  refer- 
ence 1. The re su l t s  indicated t h a t  the  conduction correction t o  the  data would 
be less than 5 percent of the  measured ra tes ;  the  data are therefore presented 
uncorrected. 

RFSULTS AND DISCUSSION 

Spherical Nose 

Heat-transfer rates along the  center l i n e  of the  blunt (spherical  nose) 

models are presented i n  f i v e  4 i n  terms of the  parameter NSt,mlj%O,t based on 

free-stream conditions as i n  the  e a r l i e r  tests of t h i s  series. The distance 
parameter i s  the surface distance along the wing center l i n e  from the  
Newtonian stagnation point i n  terms of model thickness. The flagged symbols 
indicate  the  a t t i t ude  a t  which t e s t s  f o r  the high angle-of-attack model (model 4) 
overlap those fo r  the  low angle-of-attack model (model 2) .  The data fo r  the  two 
models a t  t h i s  angle of a t tack  generally compare favorably; however, i n  some 
instances, as shown i n  f igure 4 a t  sc/t = 0.524, considerable difference ex is t s  
between the  heating measured on the  two models. 
i n  general, follows the movement of the  Newtonian stagnation point (sc/t = 0) 
as angle of a t tack  i s  varied and t h e  overal l  heating dis t r ibut ion i s  consistent 
with t h a t  predicted by Lees' theory f o r  the  i so la ted  sphere. The maximum rate 
of heating i s  shown t o  vary by a fac tor  of 2 over the  range of these tests; a t  
the  two high angles of a t tack  (a = 80° and 900) the  maximum rate drops rapidly 
as  t he  flow s t a e a t i o n  point moves toward the  s lab surface. 

sc/t 

- 
The point of maximum heating, 

Cylindrical  Leading Edge 

The variat ion of maximum heat-transfer parameter with angle of a t tack  i s  
shown i n  figure 5.  These m a x i m  values w e r e  obtained close t o  the  Newtonian 
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stagnation l i n e  of the component of the flow normal t o  the leading edge, here- 
i na f t e r  called Newtonian stagnation l ine .  In general, the  measured heating 
along the leading edge of both the sharp- ( f ig .  3(a))  and blunt-nose ( f ig .  ? (b ) )  
models increased with angle of a t tack up t o  about bo and leveled off a t  the 
higher angles of attack. 

The data a t  the L / t  = 0 s ta t ion  a re  higher than the  other leading-edge 
data, par t icular ly  a t  the  high angles of a t tack.  
edge data, f o r  L / t  s ta t ions from 1 t o  9 on the  sharp-nose models ( f ig .  3 (a ) ) ,  
indicates a s l igh t  change i n  heating along the  leading edge a t  angles of a t tack 
less than about 30'. The decrease of the heating along the leading edge of the 
sharp-nose model a t  higher angles of a t tack  i s  shown by the spread of the data; 
however, the data a t  the most rearward s ta t ions  (L/ t  = 6 t o  9 )  show l i t t l e  
change i n  the heating. 

The compactness of the leading- 

The data are  compared with theoret ical  values obtained from adaptations of 
the theories of Fay and Riddell and Sibulkin f o r  heat t ransfer  a t  the stagna- 
t i on  point of a blunt body. These values were obtained from the equations of 
reference 1 by using a value of the geometric stagnation-point velocity gradient, 
I- 1 

equal t o  2.18. From the theory of Fay and Riddell, 

0 

PWTO 
POT, 

i n  which j = 0 fo r  a cylinder and j = 1 f o r  a sphere and where Cw = -. 
From the theory of Sibulkin, 

Although both the Fay and Riddell and the Sibulkin theories for  cylinders under- 
estimate the maximum heat t ransfer  on both the  sharp- and blunt-nose models a t  
angles of a t tack from 00 t o  20° ( f igs .  3(a)  and ?(b) ) ,  the  trend of the data i s  
indicated by t h e  theories. The leveling off of the data a t  an angle of a t tack 
of 300 coincides with the movement of the flow stagnation l i n e  from the cylindri- 
c a l  leading edge t o  the slab. Typical posit ion of the flow stagnation l i n e  on 
a del ta  wing i s  shown i n  the o i l  flow photographs of reference 4. I n  applying 

8 



I 

the  isolated cylinder theories,  no allowance was made for  t h i s  s h i f t .  
data a t  the  L / t  = 0 stat ion,  which may be considered as a l i n e  on a cylinder, 
follow the theoret ical  trend t o  higher angles of attack than a t  the other s t a -  
t ions.  
L / t  = 0 stat ion,  which may be considered as  a l i n e  on a sphere, show good agree- 
ment with the sphere theories for angles of a t tack up t o  400. 
angles of attack there i s  considerable discrepancy between these data and 
theory. 

The 

Similarly, fo r  the blunt-nose model ( f i g .  5 (b ) ) ,  the data a t  the 

A t  the  higher 

Distributions of the heat-transfer parameter along the leading edge a t  
various s ta t ions sn/t  a re  presented i n  figures 6 and 7. The point of maximum 
heating around the leading edge approximately coincides with the location of 
the Newtonian stagnation point. The heating decreases sharply from t h i s  maxi- 
mum heating with distance around the  leading edge. In  general, the heating 
along the leading edge of the sharp-nose model i s  relat ively constant fo r  each 
of the s ta t ions (See f igs .  6(a)  and 
6(b) . )  However, a t  an angle of a t tack  of 30°, the heating along the juncture 
of the leading edge and the s lab region (sn / t  = 0.785) decreases sharply toward 
the t r a i l i n g  edge. A t  the higher angles of a t tack ( f ig s .  6(c)  and 6 ( d ) ) ,  the 
heating r a t e  on the windward side gradually decreases with distance from the 
apex. 

Sn/t a t  angles of a t tack from 00 t o  30°. 

The heating along the leading edge of the blunt-nose model ( f i g .  7)  i s  
generally similar t o  tha t  fo r  the sharp-nose model ( f i g .  6).  
leading-edge heating was higher on the blunt-nose model than on the  sharp-nose 
model. A t  an angle of a t tack of Oo ( f ig .  7 (a ) ) ,  the data i n  the region of the 
blunt nose ( L / t  < 2) drop off and then increase s l ight ly .  
seems t o  have disappeared a t  an angle of a t tack of 30° ( f i g .  7 (b) )  fo r  posit ive 
values of 
edge. 
( f i g .  7 ( c ) )  and fo r  a portion of the leading edge a t  an angle of a t tack of 90° 
( f i g .  7 (d ) ) .  
has shif ted from the leading edge t o  the slab region and caused an increase i n  
the heating over the rearward portion ( large values of 

However, the 

This nose e f fec t  

sn/t and the windward heating gradually decreases toward the t r a i l i n g  
This decrease i n  heating i s  a l so  seen a t  an angle of a t tack of 60° 

For the 90° angle-of-attack case, the Newtonian stagnation l i n e  

L / t )  of the leading edge. 

Slab and Leading Edge 

The variation of the heat-transfer parameter along l ines  normal t o  the 
cylindrical  leading edge on the sharp-nose del ta  wings i s  presented i n  figure 8. 
The surface distance i s  measured from the plane of symmetry of the leading 
edge; posit ive values indicate the windward surface and negative values, the lee-  
ward surface. The short-dashed ve r t i ca l  l ines  a t  Sn/t = a .783  on the figures 
indicate the juncture of the leading-edge and slab regions. The so l id  ve r t i ca l  
l i n e  i n  the leading-edge region denotes the Newtonian stagnation point which i s  
i n  close agreement with the point of peak heating as  indicated by the data a t  
a l l  angles of attack. Also shown i n  t h i s  figure i s  the leading-edge heating 
dis t r ibut ion calculated with Lees' theory ( r e f .  10) for  the heat-transfer dis- 
t r ibu t ion  around a cylinder. This dis t r ibut ion was used with the Fay and 
Riddell stagnation-point value. (See eq. ( 2 ) . )  For the angle-of-attack range of 

Sn/t 
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the  t e s t s ,  the data on the leading edge of the sharp-nose models followed the 
trend predicted by swept cylinder theory. 
ured heating a t  each L / t  
leading-edge Newtonian stagnation point. With increasing angle of a t tack the 
leading-edge Newtonian stagnation point moves toward- the slab and the heating 
on the slab approaches the maximum heating on the leading edge. 

For a l l  angles of attack, the meas- 
s ta t ion  decreases with increasing distance from the 

On the slab, a t  a given value of Sn/t, the  heat t ransfer  on the sharp-nose 
models ( f ig .  8) i s  higher along the wing center l i n e  ( so l id  symbols) than on 
other par ts  of the s lab surface fo r  the angles of a t tack tested,  except a t  
a = 10'. 
was essent ia l ly  constant f o r  each angle of attack. 
30° t o  60°, the center-line heating was highest i n  the region of the slab apex 
and gradually decreased toward the t r a i l i n g  edge. 
the point of maximum heating s h i f t s  t o  the slab region and the center-line 
heating again tends t o  become constant a t  each angle of attack. 

A t  angles of a t tack  up t o  about 200, the heating along the center l i ne  
For angles of attack from 

A t  the  higher angles of attack 

On the slab, the data a re  compared with laminar s t r i p  theory ( r e f .  11) by 
u t i l i z ing  oblique shock relat ions t o  obtain the pressure distributions fo r  
angles of a t tack  from Oo t o  30° and Newtonian (CP,- = 2.0) pressure dis t r ibu-  

t ions f o r  the higher angles of attack. The data on the slab center l i ne  a re  
compared with cross -flow 
reference 1: 

theory obtained from the following equation of 

where was obtained from reference 1 and designates the cross-flow stagnation- 
point velocity gradient a t  a point on the center l i n e  of the wing nondimension- 
a l ized with respect t o  the velocity gradient a t  the  stagnation point of a sphere. 

6 

The re la t ive ly  wide variations i n  heating ra tes  over the slab a re  such as  
t o  preclude prediction of more than the general dis t r ibut ion through use of the 
s t r i p  theory since the l a t t e r  i s  based upon the  assumption of uniform heating 
along rays pa ra l l e l  t o  the leading edge. 
attack from bo t o  60° i s  i n  excellent agreement with the measured center-line 
heating rates .  
the magnitude of the heating ra tes  and the variation along the chord. 

The cross-flow theory a t  angles of 

A t  the  higher angles of a t tack the theory overestimates both 

The maximum heating on the leeward s lab of the sharp-nose model occurs 
along the center l i n e  fo r  angles of attack up t o  about bo. A t  these angles of 
attack, large differences ex is t  between the center-line data and tha t  along the 
100 ray. 

Figure 9 presents the  heat-transfer data f o r  the blunt-nose models. Again 
the sol id  ve r t i ca l  l i n e  i n  the leading-edge region indicates the Newtonian stag- 
nation point and shows good agreement with the measured data. Lees' theories I 
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for  the heat-transfer dis t r ibut ion around a cylinder and a sphere a re  shown t o  
encompass the measured leading-edge data for  angles of a t tack up t o  30°. (See 
f ig .  9 (e ) . )  
overestimate the data although they closely predict the gradients around the 
cylinder. The data a t  the L / t  = 0 s ta t ion  show good agreement with the sphere 
theory throughout the angle-of-attack range. 

A t  the higher angles of a t tack the theories tend t o  coincide and 

A t  angles of a t tack other than loo, 20°, and 30°, the  heat t ransfer  a t  
given values of 
the surface. Exception t o  t h i s  trend i s  similar t o  tha t  observed on the sharp- 
nose model a t  an angle of a t tack of loo but i n  contrast t o  previous tests 
( r e f .  1) where the  center-line heating ra tes  were consistently higher than those 
over the remainder of the slab. The center-line heating decreases i n  the direc- 
t ion  of the t r a i l i n g  edge fo r  most of the angles of a t tack tested.  A t  an angle 
of a t tack of 30° ( f igs .  9(d) and 9 ( e ) ) ,  a sharp r i s e  i n  the center-line heating 
occurs on both blunt-nose models and suggests t rans i t ion  i n  a very s m a l l  region 
a t  the t r a i l i n g  edge. 
t rans i t ion  would be expected on the sharp-nose model f i r s t  and i s  not indicated 
i n  these t e s t s .  A similar increase i n  the center-line heating i s  also seen a t  
angles of a t tack of TO0 and go0. (See f igs .  9 ( i )  and 9 (k ) . )  
of data wi th . s t r ip  theory and cross-flow theory a t  these angles of a t tack must 
be considered fortuitous as  the theory and experiment a t  other a t t i tudes  d i f f e r  
by as  much as 2 t o  1. 

Sn/t i s  higher along the center l i n e  than on other par t s  of 

However, because of the higher loca l  Reynolds numbers, 

Areas of agreement 

On the leeward slab of the blunt-nose model, the center-line heating, indi-  
cated by the sol id  symbols, i s  considerably higher than the off-center data a t  
angles of a t tack below about 500, but a t  higher angles of attack, the heating 
generally decreases toward the center l ine .  The heat-transfer r a t e  fo r  the 
sharp- and blunt-nose models i s  presented i n  figure 10 as  a function of surface 
distance along the wing center l i ne .  The increase i n  heating r a t e  with 
increasing angle of a t tack on both the sharp- and blunt-nose models i s  consistent 
with theory although marked deviations i n  both magnitude and dis t r ibut ion are  
noted under many conditions. On the sharp-nose model ( f i g .  lO(a)) ,  the heating 
on the windward surface tends t o  leve l  off toward the t r a i l i n g  edge and becomes 
constant a t  each angle of attack. Repeat runs verif ied the overlap of the data 
shown at  angles of a t tack of 00 and loo. Cross-flow theory as previously noted 
agrees w e l l  with the measured center-line data a t  a 2 bo. 

The leeward data on the sharp-nose model ( f ig .  lO(a))  i s  indicative of 
uniform heating f o r  angles of a t tack up t o  200. A t  a 5  30° a sharp decrease 
i n  the heating occurs toward the t r a i l i n g  edge; t h i s  change may be influenced 
by s t ing  and adapter effects .  

The measured heating along the center l i n e  of the blunt-nose models i s  
presented i n  figure lo(%). 
decreases i n  the direction of the t r a i l i n g  edge a t  each angle of a t tack tes ted  
except a t  angles of a t tack of 30°, 700, and go0. The data show f a i r  agreement 
with s t r i p  theory a t  an angle of a t tack of Oo but a re  below the prediction of 
s t r i p  theory a t  the higher angles. 
the measured data; however, i n  the region of the juncture of the nose and the 
slab, f a i r  agreement i s  shown. Comparison of figures lO(a) and 10(b) shows a 

I n  general, the heating on the windward s lab 

I n  general, cross-flow theory overestimates 
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marked reduction i n  heating ra tes  over the a f t  section of the wing a t  angles 
of attack l e s s  than 40° as  a resu l t  of nose blunting. 
a t tack  no s ignif icant  change was observed. The large reduction i n  heating with 
the nose blunted i s  confined t o  a region close t o  the center l ine .  

A t  higher angles of 

On the leeward slab,  the heating rate a t  angles of a t tack of loo and 20° 
i s  greater than tha t  a t  an angle of a t tack of Oo. 
the leeward surface divide themselves in to  two d i s t inc t  groups based on angle 
of attack. (See f i g .  10(b).  ) These groupings cannot be a t t r ibu ted  t o  model 
differences i n  view of the very good agreement indicated a t  the overlapping 
angle of a t tack (3OO). 
than the windward values a t  
a t tack approaches 900. 

The heating dis t r ibut ions on 

The leeward heating rates are an order of magnitude less 
a = 300 and two orders lower as the angle of 

CONCLUSIONS 

Heat-transfer dis t r ibut ions have been presented f o r  TO0 swept s lab  del ta  

The resu l t s  of 
wings a t  a Mach number of 9.86 and angles of a t tack  up t o  goo. 
cylindrical  leading edges and e i ther  a sharp or  a blunt nose. 
the investigation indicate the following conclusions: 

These wings had 

1. Lees' theory fo r  the heat-transfer dis t r ibut ion i s  shown t o  be i n  good 
agreement with the data obtained on the nose and leading edge. 

2. The point of peak heating on the leading edge i s  i n  close agreement with 
the Newtonian stagnation point. 

3 .  The heating ra tes  on the leeward slab a t  angles of a t tack from 200 t o  30° 
are  an order of magnitude l e s s  than the windward values and d i f f e r  by two orders 
as  the angle of a t tack approaches go0. 

4. Scattered agreement of experimental data with s t r i p  theory w a s  shown a t  
low angles of attack. 

5.  Cross-flow theory .was i n  excellent agreement with experimental data on 
the center l i n e  a t  angles of a t tack from 400 t o  60°; however, a t  other model 
a t t i tudes  the theory differed s ignif icant ly  from experiment. 

6. Nose blunting resulted i n  a reduction of heating rates over the a f t  
center-line section of the wing a t  angles of a t tack less than about bo. 
significant change w a s  shown a t  higher angles of attack. 

No 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va. ,  July 8, 1964. 
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(a) General view. 

Figure 1.- Langley continuous-flow hypersonic tunnel. 



(b)  Test section. 

Figure 1.- Concluded. 
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( a )  Photograph of models. 

Figure 2.- Heat-transfer models. 



Model I Model 2 

(b) Sketch of low angle-of-attack models. A l l  dimensions are i n  inches. 

Figure 2 . -  Continued. . 
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1. 
Model 3 

(c) Sketch of high angle-of-attack models. All dimensions are in inches. 

Figure 2.- Concluded. 
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(a)  Low angle-of -attack models. 

Figure 3 . -  Variation of skin thickness over the spherical  nose and blunt leading edges. A l l  dimensions a re  i n  inches. 
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Figure 3.- Concluded. 
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Figure 4.- Stanton number d i s t r ibu t ion  on spherical  nose of slab de l t a  wing. 
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Figure 5.- Maxim Stanton number measured along the leading edge of delta wings. 
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Sharp-nose model. 
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Figure 7.- Stanton number dis t r ibut ion along the  leading edge a t  various s ta t ions normal t o  the leading edge. 
Blunt-nose models. 
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Figure 8.- Continued. 
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( c )  a = 200. 

Figure 9.- Continued. 
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Figure 10.- Center-line distribution of heat-transfer coefficient on slab delta wings. 
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